의사결정나무활용분야 (1) 썸네일형 리스트형 [머신러닝] 의사결정나무(Decision tree) -1 : 장단점, 활용분야, 구조, 분석절차, 과적합 1. 의사결정나무(Decision tree)의 장단점과 활용 분야 의사결정나무는 머신러닝의 지도 학습에 해당되는 알고리즘 중 하나로, 의사결정 규칙(decision rule)을 나무 구조로 도표화하여 분류(Classification)와 예측(Prediction)을 수행하는 분석 방법이다. 쉽게 말해서 스무고개를 그림으로 나타냈다고 생각하면 된다. 따라서 의사결정나무는 직관적으로 이해하기 쉽기 때문에 설명이 필요한 경우에 많이 사용한다. 예를 들어, 의료 분야에서 환자가 어떤 병에 걸렸을 때 이러이러한 조건에 부합하기 때문에 어떠한 질병이 의심된다고 설명을 해주거나, 은행에서 대출이 제한된 고객에게 이러한 이유들 때문에 대출이 제한되었다고 설명하는 경우 등에 사용할 수 있다. 하지만 의사결정나무의 가장 큰.. 이전 1 다음